Sum of Sierpinski-Zygmund and Darboux Like Functions

Krzysztof Plotka[∗] Department of Mathematics, West Virginia University Morgantown, WV 26506-6310, USA [kplotka@math.wvu.edu](mailto: kplotka@math.wvu.edu)

and

Institute of Mathematics, Gdansk University Wita Stwosza 57, 80-952 Gdansk, Poland

February 28, 2000

Abstract

For \mathcal{F}_1 ; $\mathcal{F}_2 \subseteq \mathbb{R}^{\mathbb{R}}$ we de ne Add $(\mathcal{F}_1; \mathcal{F}_2)$ as the smallest cardinality of a family $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ for which there is no $g \in \mathcal{F}_1$ such that $g + \mathcal{F} \subseteq \mathcal{F}_2$. The main goal of this note is to investigate the function Add in the case when one of the classes \mathcal{F}_1 ; \mathcal{F}_2 is the class SZ of Sierpinski-Zygmund functions. In particular, we show that *Martin's Axiom* (MA) implies $Add(AC, SZ) \geq$! and $Add(SZ; AC) = Add(SZ; D) = c$, where AC and D denote the families of *almost continuous* and *Darboux* functions, respectively. As a corollary we obtain that the proposition: every function from R into R can be represented as a sum of Sierpinski-Zygmund and almost continuous functions is independent of ZFC axioms.

1 Introduction

Theterminology is standard and follows $[2]$ $[2]$. The symbols R and Q stand for the sets of all real and all rational numbers, respectively. A basis of R as a linear space over \bigcirc is called *Hamel basis*. For Y R, the symbol $\text{Lin}_{\bigcirc}(Y)$ stands for the smallest linear subspace of R over Q that contains Y. The cardinality of a set X we denote by jXj . In particular, jRj is denoted by c. Given a cardinal

, we let cf() denote the co nality of . We say that a cardinal is regular provided that $cf() =$.

B and M stand for the families of all Borel and all meager subsets of R, respectively. We say that a set $B \R$ is a *Bernstein* set if both B and R n B

This paper was written under supervision of K. Ciesielski. The author wishes to thank him for many helpful conversations.

intersect every perfect set. For a cardinal number , a set $A \R$ is called -dense if $jA \setminus Ij$ for every non-trivial interval *I*. For any planar set P , we denote its *x*-projection by $dom(P)$.

We consider only real-valued functions. No distinction is made between a function and its graph. For any two partial real functions f ; q we write $f + q$, f g for the sum and dierence functions de ned on dom(f) λ dom(g). The class of all functions from a set X into a set Y is denoted by Y^X . We write f jA for the restriction of $f 2 Y^X$ to the set A X . For B \mathbb{R}^n its characteristic function is denoted by B . If f ; $g \neq Y^X$, we denote the set $fx \neq X$: $f(x) = g(x)g$ by $[f = g]$. For any function $g \, 2 \, \mathbb{R}^{\times}$ and any family of functions $F \quad \mathbb{R}^{\times}$ we de ne $q + F = fq + f$: f 2 Fg.

The cardinal function $A(F)$, for $F = \mathbb{R}^X$, is de ned as the smallest cardinality of a family $F - R^X$ for which there is no $g \, 2 \, R^X$ such that $g + F - F$. Itwas investigated for many dierent classes of real functions, see e.g. $[5]$, $[6]$ $[6]$, [[13](#page-18-0)]. In this paper we generalize the function A by imposing some restrictions on the function g. Thus for F_1/F_2 R^X we de ne

Add
$$
(F_1; F_2)
$$
 = min *fjFj*: $F \quad \mathbb{R}^X \& : 9g 2 F_1 g + F \quad F_2 g [f(j\mathbb{R}^X j)^+ g]$

Observe that $A(F) = Add(R^X; F)$ for any set X, so the function Add is indeed a generalization of the function A. Notice also the following properties of the Add function.

Proposition 1 Let F_1 F_2 \mathbb{R}^X and F \mathbb{R}^X .

- (1) $Add(F_1; F)$ $Add(F_2; F)$.
- (2) $\text{Add}(F; F_1)$ $\text{Add}(F; F_2)$.
- (3) Add(F_1 ; F_2) 2 if and only if $R^X = F_2 F_1$.
- (4) If $Add(F_1; F_2) = 2$ then $F_1 \setminus F_2$ 6;
- (5) $A(F) = Add(F; F) + 1$. In particular, if $A(F)$! then $Add(F; F) =$ $A(F)^{1}$ $A(F)^{1}$ $A(F)^{1}$

Proof. The properties (1)-(4) are obvious. We will prove (5). It is clear that Add(F ; F) A(F). On the other hand, observe that $A(F)$ Add(F ; F) + 1. To see the above let F R^X be such that $jFj = Add(F;F)$ and

$$
: 9g\ 2F\ g+F\ F:
$$

Then we have

$$
: 9 g 2 R^X g + (F [f0g] - F)
$$

where $0: X/I$ R is a function identically equal to zero.

¹ Very similar observation, in a little bit di erent context, was obtained independently by Francis Jordan[[8](#page-18-1), Proposition 1.3].

So the conclusion is obvious in the case $A(F)$ /. Therefore we will concentrate on the case $A(F) = k$ for some $k \, 2 \, l$. Recall that the function A is bounded from the bottom by 1, thus k 1. From the previous argument we imply that $Add(F; F)$ k 1. So we only need to justify that $Add(F; F)$ k 1.

Let ff_1 ; :::; $f_k g$ be a family witnessing $A(F) = k$. Then the set ff_1 f_k ; :::; f_{k-1} $f_k g$ witnesses Add(F ; F) k 1. Indeed, assume by contradiction, that we can nd a function $f 2 F$ such that $(f_i - f_k) + f 2 F$ for every $i = 1; \ldots; k$ 1. Then the function $f - f_k$ shifts the set $ff_1; \ldots; f_kg$ into F. Contradiction.

Our main goal is to investigate the function Add in the case when one of the classes F_1 ; F_2 is the class of Sierpinski-Zygmund functions. Before we state the main result of the paper, let us recall the following de nitions.

For X Rⁿ a function $f: X \, I \, R$ is:

additive if $f(x + y) = f(x) + f(y)$ for all $x, y \, 2 \, X$ such that $x + y \, 2 \, X$;

almost continuous (in sense of Stallings) if each open subset of $X \times \mathbb{R}$ containing the graph of f contains also graph of a continuous function from X to R ;

connectivity if the graph of f/Z is connected in $Z \R$ for any connected subset Z of X ;

countably continuous if it can be represented as a union of countably many continuous partial functions;

Darboux if $f[K]$ is a connected subset of R (i.e., an interval) for every connected subset K of X ;

an extendability function provided there exists a connectivity function $F: X \quad [0, 1]$! R such that $f(x) = F(x, 0)$ for every $x \, 2 \, X$;

peripherally continuous if for every x 2 X and for all pairs of open sets U and V containing x and $f(x)$, respectively, there exists an open subset W of U such that $x \, 2 \, W$ and $f[bd(W)] \, V$;

Sierpinski-Zygmund if for every set Y X of cardinality continuum c, fjY is discontinuous.

The classes of functions de ned above are denoted by $AD(X)$, $AC(X)$, Conn(X), $CC(X)$, $D(X)$, $Ext(X)$, $PC(X)$, and $SZ(X)$, respectively. The family of all continuous functions from X into R is denoted by $C(X)$. We drop the index X in the case $X = R$

set. (See [\[10](#page-18-2)].) It is also well-known that each continuous partial function can beextended to a continuous function de ned on some G set. (See [[12\]](#page-18-3).) Thus if $\iint F = g|j| < c$ for each continuous partial function g de ned on some G -set then f is Sierpinski-Zygmund. Recall also that each additive function f 2 AD is linear over \overline{Q} , i.e., for all p ; q 2 \overline{Q} and x ; y 2 \overline{R} we have $f(px + qy) = pf(x) + qf(y)$.

The above classes are related in the following way (arrows ! indicate proper inclusions.) (See [\[3](#page-17-3)] or [\[7](#page-18-4)].)

$$
C \longrightarrow Ext \longrightarrow AC \longrightarrow Com \longrightarrow D \longrightarrow PC
$$

For functions from R into R.

$$
C(R^n) \longrightarrow Ext(R^n) = Conn(R^n) = PC(R^n) \longrightarrow AC(R^n) \times AC(R^n)
$$

$$
D(R^n) \longrightarrow Ext(R^n) = Conn(R^n) = PC(R^n) \longrightarrow AC(R^n) \times AC(R^n)
$$

For functions from R^n into R with $n = 2$.

The class of Sierpinski-Zygmund functions is independent of all the classes included in the above chart in the following sense. There is no inclusion between SZ and AC; Conn; D; or PC. SZ is disjoint with C and Ext. (See also comment below Corollary

The following remains an open problem. (See Fact [15.](#page-9-0))

Problem 3 Does the equality $Add(AC, SZ) = I$ hold in $ZFC + MA''$ (or in \ZFC + CH"?)

Let us make here some comments about the theorem. Parts (1) and (3) give only lower bound for Add(AC; SZ). So one may wonder whether it is possible to give in ZFC any non-trivial upper bound for that number. However, in the model used to prove (3) it is possible to have $c^+ = 2^c$, so it cannot be proved in ZFC that $Add(AC, SZ) < 2^c$. But it is unknown whether $Add(AC, SZ)$ c⁺ in ZFC. The next comment is about symmetry of Add. It is consistent that $A(SZ) < 2^c$. (See [\[5](#page-17-1)].) Hence the part (4) implies that Add is not symmetric in general.

Next we give some corollaries of the main result. To state the rst one, note that $SZ = f f$: $f 2SZg = SZ$. This observation, Proposition [1](#page-1-1) and the part (2) of Theorem [2](#page-3-0) immediately imply the following corollary.

Corollary 4 (MA) Every function $f: R$! R can be represented as a sum of almost continuous and Sierpinski-Zygmund functions.

Proof. For every $n \quad 2$ if $f \nvert 2$ AC(Rⁿ) \SZ(Rⁿ) then $f \nvert R^2 \nvert 2$ AC(R²) \SZ(R²). (See[[13\]](#page-18-0).) Hence it is enough to prove the remark for $n = 2$. We construct the family fB_y : y 2 Rg of c-many blocking sets in R³ with pairwice8.C(

 $f_{B}jJ$ B. From the de nition of B and MA we see that \int_{B} $\int_{B} [f = q]$ is of rst category as the union of less than c-many sets of rst category. Recall that $F \stackrel{\sim}{2} F_A$. This implies that $(1 \lambda A)n^{\sim}$ \int_{S} \int_{S of second category for every nontrivial interval. The above holds because otherwise we would have that $(K \setminus A)$ $\Big\{ \Big\}$ $\Big\{ \Big\}$ $\Big\}$ $\Big\}$ $\Big\{ \Big[(f - f) = q \Big]$ for some K 2 B n M. Then for every x 2 (K \bigwedge^{∞} A) there are \qquad \qquad and $f \circ f$ such that $f(x) - f(x) = g(x)$. De ne h: $(K \setminus A)$! R by $h(x) = f(x)$ $q(x) \in f(x)$. It is easy to see that h is a subset of both \int_{S}^{S} (f q) and \int_{S} . In particular, it implies that h 2 C^{<c}(K \ A) which contradicts the assumption that F 2 F_A .

Hence $(J \setminus A)$ $n \Big|_{S \subset B} \Big|_{S \in F}$ $[(f - f) = q] \int [f - q] \int D$ is of second category. Therefore $D_B^B \setminus \overline{J} G$;. This implies $g' \setminus B - g_B \setminus B G$; (g $_B$ and f_B coincide on $D_B^B \setminus J$.

(2) Let g'' : A n dom(g') ! R be a Sierpinski-Zygmund function such that $g'' + F$ SZ_{part}. Such a function exists because $\ddot{J}F\dot{J} < A(SZ)$. We de ne $g = g' \int g''$. We see that $g \supseteq SZ(A)$, any extension of g onto R is in AC, and $q + F$ SZ(A). П

Lemma 13 (MA) Let $ff_i g_1^n$ RR, $n = 1, 2, \ldots$ There exists $ff'_i g_1^n$ 2 F_A such that f_i j A_i 2 C^{<c}(A_i), where $A_i = [f_i \notin f'_i]$.

Proof. The proof is by induction on number n of functions.

Assume that the lemma is true for every $fg_i g_1^{n-1}$ RR; n 1. Let us x $ff_i g_1^n$ R^R. We will construct a family $ff'_i g_1^n 2 F_A$ such that $f_i f_i f_i \notin f'_i$ 2 $C^{<\mathfrak{c}}([f_i \in f'_j])$ for all $i \in n$.

We start with showing that the following claim holds for all $f/h/h' 2 R^R$.

If fj[f 6 h] $2 C_{\text{part}}^{< c}$ and hj[h 6 h'] $2 C_{\text{part}}^{< c}$ then fj[f 6 h'] $2 C_{\text{part}}^{< c}$.

This is so because we have that $[f \notin H]$ $[f \notin H]$ $[f \notin H]$ and consequently

 f $[f \notin h']$ f $j([f \notin h] [h \notin h']) = f$ $[f \notin h] [f \notin h']$ $n[f \notin h])$

$$
f[f \in h] [h][h \in h']
$$

This completes the proof of the claim.

Now observe that, by the inductive assumption, there exists $fh_ig_2^p 2 F_A$ such that f_{i} f_{i} 6 h_{i} 2 $C_{\text{par}}^{<\alpha}$ \sum_{part}

There exists a maximal element A_{max} in $B_{f_1;\dots;f_n}$ with respect to the relation [∗] dened by

 X_1 * X_2 ; if X_1 $n X_2$ is of rst category.

in R², we obtain that $\int_{n<1}^{\infty} f_n j A_n$ is also meager as a union of countably many meager sets. We conclude from this that there exists a meager horizontal section of $\int_{n=1}^{\infty} f_n j A_n$. Therefore the set $\int_{n=1}^{\infty} f_n j A_n$ contains a constant function de ned on comeager Borel set. \blacksquare

Using very similar technique as the above we can prove

Fact 15 (CH) Either $Add(AC, SZ) = I$ or $Add(AC, SZ) > c$.

Proof. Let us assume that $F = f$: $\langle cg \rangle$ R^R witnesses Add(AC;SZ) c. For every $n < l$, de ne a function f_n^* as an extention of ϵ M_{ξ}^n onto R, where fM^n : $n < l$; \leq c g is an Ulam matrix. We claim that ff^s_n : $n < l$ g witnesses $Add(AC, SZ)$ / To see this x an h 2 AC. By our assumption about F, there exists an $\sigma_0 < c$ such that $h + f_\sigma$ β SZ. $\frac{1}{\sqrt{a}}$ means $h + f_\sigma$ is continuous on a set X of cardinality continuum. Since R $n \overline{\ }_{n<\ell}^{\frown}$ M $\overline{\ }_{n}^{\prime}$ is countable we obtain that $jX \setminus M_{\circ}^{m}j = c$ for some $m < l$. Hence $h + \widehat{f}_{m}^{*}$ is continuous on a set of cardinality continuum which means that $h + f_m^*$ g SZ. П

Proof of Add(AC;SZ) / (under MA).

We begin by $\langle x \rangle$ xing $F = ff_1; \ldots; f_ng$ $\in \mathbb{R}^R$. Let $F' = ff'_1; \ldots; f'_ng \nleq F_R$ be a corresponding family given by Lemma [13](#page-7-0) for $A = R$. Based on Lemma [12](#page-6-0), we can nd a g 2 AC \ SZ such that $g + F'$ SZ. Since f_i f'_i 6 f_i 2 $C_{part}^{<\epsilon}$ and g 2 SZ, we obtain that $g + f_i$ 2 SZ (for $i = 1, 2, \ldots, n$.)

In order to prove part (2) of Theorem [2](#page-3-0) we need to state one more lemma.

Lemma 16 $Add(SZ/D)$ 2^{cc} .

Proof.

Since f' \int f' \leq f \bigcup $2 C_{part}^{< c}$ and $SZ(X) + C^{< c}(X)$ = $SZ(X)$ for every X R, we conclude that $g + f \overline{2}SZ_{part}$, \langle . Put $h = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $(g + f)$. Since Martin's Axiom implies the regularity of c we obtain that h 2 SZ. Clearly, $h + F$ AC. П

As the nal remark let us notice that parts (1) and (2) of the main result as well as Lemmas [12](#page-6-0) and [13](#page-7-0) could be proved under weaker assumptions. The proofs require only two consequences of Martin's Axiom: $c = c^{< c}$ (this implies regularity of c); the union of less than c-many meager sets is meager.

3 Proof of Theorem 2 (3)

We will show that the existence of c-additive -saturated ideal J in $P(R)$ containing M implies Add(AC; SZ) > c. It is known that the existence of such an idealis equiconsistent with \angle ZFC + 9 measurable cardinal."^{[2](#page-10-0)} (See [[9\]](#page-18-5).)

First notice that we may assume that $J \setminus B = M$. To see this suppose that there exists a Borel set B of second category in J . B is residual in some open interval *I*. Then $I \ncong J$ because $I \ncong B$ is meager and $I = (B \setminus I) \int (I \ncong B)$. Now, let U be a maximal open set belonging to J . Such a set exists because the union of all open sets from J can be represented as a union of countable many such sets. We have that R n U contains a nonempty open interval I_0 . Otherwise it would be nowhere-dense and then $R = U \int (R \, n U) \, 2 \, J$. Now, any homeomorphism between I_0 and R induces the desired ideal on R.

The schema of the proof is similar to the idea of combining Lemmas [12](#page-6-0) and [13](#page-7-0) in the proof of $Add(AC/SZ)$ /. First step is to show that

() for each $f: R$! R there exists an $f^{\mathcal{J}}$ 2 R^R such that $f \circ f f^{\mathcal{J}}$ 2 CC_{part} and $f^{\mathcal{J}}jX \mathcal{Z} CC(X)$ for every $X \mathcal{Z} J$.

To see this x an $f \nvert 2 \nvert \mathbb{R}^{\mathbb{R}}$. We claim that there exists a set Y such that fjY 2 CC(Y) and Y' \mathcal{I} Y for all Y' satisfying fjY' 2 CC(Y'), where \mathcal{I} is de ned by

$$
Z_1 \xrightarrow{J} Z_2
$$
; if $Z_1 \nrightarrow Z_2 \nrightarrow Z_3$:

If the claim did not hold then we could easily construct a strictly increas-

ing on -3(e(Inde,)]TJ5at)-309(R)]TJ/653382s bec in5[(in7.237 1.495 Td[(2)49d[(1y)]TJ/F11 9.96310.516 7.472 254(f)]TJ/F10 6.974 Tf 4.877 -1.48.54d[()]TJ/F8 [(T)830)]TJ -337.01418/F8 9.[(inTf 11.675 0 Td[(for)-7 0 d[(+)]TJ/1 9.96<T)831(.974 Tf 7.998 3.617[(a3[(R)]TJ/F8441795 -3.615 Td[(in)28(terv)563[(R)]TJ -3.61<T)831(!11 9.963 Tf 7.195228(58[(Z)]TJ/F7 6.974 Tf Tf 102.975 0 [(2)]TJ/F14 9.963 Tf 4.463 0 Td[().)]Ttepro)28-3.615 Td[(suc)27(h)-330 T31g)]TJ/F11 9.963 Tf 44.746 0 Td[(f)]TJ/F14 9.9Tf 102.975 0 Td[=)]TJ/F1 9.963 Tf 10.516 7.472 Td[(S)]TJ/F10 6.974 Tf n7.237 1.495 Td[(2)70 Td[CCpart uch th8396 0 T5/F1 9.963 Tf 10.516 7.472 Td[(S)]TJ/F10 6.974 Tf n7.237 1.495 Td[(2)70 Td[Ypd[(c)]TJ/F8 911 9.963 T{ 49.18∈ 0 T87d[(;)]TJ69.963 T{ 7.∈36 1.495 Td[(⊆)]TJ/F13 6.974 T{7.748 3.6151[(pd[30 d7/F1 9.963 T{ 10.516 7.47∈ Td[(S)]TJ/F10 6.974 T{ n7.∈37 1.495 Td[(∈)70 Td[)]TJ/F14 911 9.96310.516 7.47∈ ∈54({)]TJ/F10 6.974 T{ 4.87 -1.48.3∈7d[(0)]TJ/F8 9.963 T{963 T{ 5.95 0 Td[7} f CCpartif R 2

In the next step we x a family F of real functions of cardinality c. Let $F = fh$: < cg be an enumeration of F and hf : < ci be a sequence of all continuous functions de ned on G subsets of R. Based on the previous reasoning we may assume that $h \cancel{t}X$ $\cancel{2}$ CC(X) for every X $\cancel{2}$ J and $\lt c$. Notice that if $\left| \frac{f}{f} \right| < c$ and $f \left| \frac{f}{f} \right| \leq \left(\frac{f}{f} + h \right)$ then $X \cdot 2J$. This is so since $X \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $\begin{bmatrix} f & f \\ 1 & 1 \end{bmatrix}$ and gvery set $[f = f \quad h] = [h = f \quad f \quad 2J$. Consequently, the set dom($f \nvert n$, $\frac{1}{f}$, ($f \nvert h$)) does not belong to J provided dom (f) ∂ J .

Now we construct a sequence $hg : < ci$ of partial functions such that

g is a countable dense subset of f n^{-1} $\left| \cdot \right| < \frac{1}{2}$ $((f h) [f L]$ Proof. Let $hx : < ci$ and $hf : < ci$ be the sequences of all real numbers and all continuous functions de ned on a G subset of R, respectively. We will de ne the set X by de ning its vertical sections by trans nite induction. For every $\lt c$ we put

 $X_{x_\alpha} = R n f f(x)$: < g:

Put $X = \int_{-c}^{\infty} f(x) g_X X_{x_\alpha}$. It is obvious that X has the required properties.

Corollary 20 There exists a family fQ_x R: x 2 Rg of pairwise disjoint countable dense sets such that $\bigcup_{x \in R} Q_x$ is an SZ-set.

Thenext lemma is proved in [[6\]](#page-17-2).

Lemma 21 [[6,](#page-17-2) Lemma 2.2] If B R has cardinality c and H \mathbb{Q}^B is such that jHj < 2^c then there is a g 2 \mathbb{Q}^B such that h \ g 6 ; for every h 2 H.

We give more general version of this lemma.

Lemma 22 If B $2\overline{B}$ has cardinality c and H $x_{\in B}Q_x$ is such that jHj < 2^c then there is a g 2 $\bigcup_{x \in B} Q_x$ such that h \ g 6 ; for every h 2 H. 6 HB $\overline{2}$ is such Hy 2(2) TJ/h5827(44)-28 (ectiv) 23 (ely) 8v-11.9d1 9.2 n there i71969833(a) TJ/F11 9.963 Tf 66.5 0

Proof. For every $x 2 B$ let $f_x: Q_x$! \bigcirc be a bijection. Now, for each $h 2 H$ we de ne h' as follows

2(20) TUH 258 = F11 9.963 Tf 10.79 0.4025 JFJ/F58 9.963 Tf 6.123 1.4953 9ery hj

Now, let g 2 $\bigcup_{x\in R} Q_x$ be a common extension of all functions $g_{(1;p;m)}$. Corol-lary [20](#page-12-0) implies that g is of Sierpinski-Zygmund type. The function g has also the following property. For every $hl/p; m \in \mathbb{Z}$ G and every $f \in \mathbb{Z}$ F there exists $x \, 2 \, B_{(1:p;m)}$ I such that

$$
jp \quad (f(x) + g(x))j < \frac{1}{m}.
$$

So, each function $f + g$, for $f 2F$, is dense in \mathbb{R}^2 . Thus $f + g 2PC$.

5 Proofs of Theorems 9 and 10

In this section we present proofs of Theorems [9](#page-5-0) and [10.](#page-5-1) Before we do this, let us recall some de nitions and cite some theorems. Let h 2 Ext. We say that a set G R is *h-negligible* provided $f \, 2$ Ext for every function $f: \mathbb{R}$! R for which $f = h$ on a set R n G. For a cardinal number c, a function $f: R$! R is called *strongly Darboux* if $f^{-1}(y)$ is -dense. If = ! then we simply say that f is strongly Darboux. We denote the family of all strongly Darboux functions by $D()$. It is obvious from the de nition that

$$
D()
$$
 $D()$ for all cardinals c .

We also introduce the family $D(P)$ of *perfectly Darboux* functions as the class of all functions $f: R$! R such that $Q \setminus f^{-1}(y)$ $\acute{\bf{6}}$; for every perfect set Q R and y 2 R. In other words, a function f is perfectly Darboux if for every y 2 R $f^{-1}(y)$ is a Bernstein set. Notice that D(P) D() for every c.

The following theorem is proved in[[4\]](#page-17-4).

Theorem 23. A(AC) = A(D) = A(D(!1)).

A little modication of the proof of the above theorem gives the following lemma.

Lemma 24 Let F 2 fAD; Extq. Then Add(F ; AC) = Add(F ; D).

The proof of Lemma [24](#page-13-0) requires the use of the following lemma and proposition.

Lemma 25 Let X be any set of cardinality continuum and $F = \mathbb{R}^X$ satis es the condition $jFj < A(D)$. There exists a g: X ! R such that $(g + f)^{-1}(y)$ 6; for each y 2 R.

Proof. Let b: R ! X be a bijection. By Theorem [23](#page-13-1) and monotonicity of A we have that $A(D) = A(D(I))$. Hence we can nd a $g' : R \, I$ R satisfying the property that $g' + (f \cdot b) 2 D(l)$ for each $f 2 F$. Put $g = g'$ b^{-1} . Clearly, g is the desired function.

Proposition 26 $A(D) = A(D(P))$.

Proof. Fix a family F R^R of cardinality less than A(D). Next, let fB : < cg and fP : \leq cg be a family of pairwise disjoint Bernstein sets and an enumeration of all perfect subsets of R, respectively. We de ne the sequence $hA : < cI$ by $A = B \setminus P$. Obviously the sets A are pairwise disjoint and each one of them has cardinality c. Applying Lemma 25 for every $\lt c$ separately, we get a sequence of functions $hg : A \cup Rj \prec c i$ such that for every $\prec c$ the following holds

8f 2F 8y 2R
$$
(g + f)^{-1}(y)
$$
 6 ::

Now, if $g \, 2 \, \mathbb{R}^{\mathbb{R}}$ is any extension of $\bigcup_{\leq \mathfrak{c}} g$ onto R then $g + F$ D(P).

Proof of Lemma [24.](#page-13-0)

First we show that

() Add $(F; F_0) > c$ for F_0 2 fAC; D $(I_1)g$.

Let us x a family F R^R with cardinality c. To prove the case $F = AD$ consider a c-dense Hamel basis H. There exists a partition f_{B_f} : f_2 Fq of H into c-dense sets. Since the projection of every blocking set in \mathbb{R}^2 contains an interval, we can nd, for every $f \, 2 \, F$, a partial function $g_f : B_f$! R such that $g_f + f$ intersects every blocking set in at least l_1 points. Thus every extension of $g_f + f$ onto R is almost-continuous and I_1 strongly Darboux. If g 2 R^R is any function containing $\Big|_{f \in F} g_f$ then $g + F$ AC \ D(!₁). In particular, we can choose g to be an additive function. Hence Add(AD; F_0) > c for F_0 2 fAC; D($!_1$)g.

Now consider the case $F = \text{Ext}$. If $F_0 = \text{AC}$ then we have the inequality $Add(Ext/AC)$ $Add(Ext/Ext) = A(Ext) = c^+ > c$ which follows from Propo-sition [1](#page-1-1) (2)&(5). Now, let us focus on the case $F_0 = D($

Consider a family $G \t R^R$ of cardinality witnessing = Add($F/D(I_1)$). We de ne a new family $G^* = fh \; 2 \; \mathbb{R}^{\mathbb{R}}$: $\mathcal{G}g \; 2 \; G \; h =^* \mathcal{G}g$, where $h =^* f$ if and only if jfx: $h(x)$ $\acute{\bf{e}}$ $f(x)gj$! Notice here that $j\ddot{G}^*j =$. This is so because \rightarrow c and for every $f^2 2 R^R$ the set fh $2 R^R$: $h = * f g$ has cardinality c. We claim that G^* witnesses Add(F ; D). Indeed, let \tilde{f} 2 F. Then, by the choice of G, there exists a g 2 G satisfying the following $f + g \nvert 2 \cdot D(l_1)$. This implies the existence of a non-trivial closed interval I and y $2R$ for which $jI\ \mathcal{N}(f+g)^{-1}(y)j = I$. By modication of g on a countable set, we get a function g^* 2 G^* with the property that $(f+g^*)[I] \setminus (-1/y)$ 6 ; 6 $(f+g^*)[I] \setminus (y;1)$ and $y \neq (f + g^*)[1]$. Therefore $(f + g^*) \neq D$. This ends the proof of the equality $Add(F; D) = Add(F; D(l_1)).$

What remains to show is that $Add(F;AC) = Add(F;D(1))$. The inequality $Add(F; AC)$ $Add(F; D) = Add(F; D)$

Fix a family F R^R of cardinality less than 2^c . Now, a small modi cation in the proof of the equality Add(SZ; PC) = 2^c in Section [4](#page-11-0) (the sets $B_{(I;p;m)}$ can be chosen to be subsets of R $n \mathcal{Q}$, gives us a function $g: \mathbb{R}$! R which shifts F into PC and which agrees with f on the set containing Q . In particular, g is an extendable function.

(iv) The last part of Theorem 9 is proved by the following inequality

 $A(D) = A(AC) = Add(AC; AC)$ $Add(F_1; F_2)$ $Add(D; D) = A(D)$:

П

Proof of Theorem [10.](#page-5-1)

(i) To prove the rst part of Theorem [10](#page-5-1) we need one more lemma.

Lemma 27 $Add(AD, D)$ $A(D(P))$. In particular, $Add(AD, D) = A(D)$.

Proof. Let P R be a perfect set with the property that P [flg is linearly independent over Q. Observe that for every p/q 2 Q; p **8** f0; 1g we have $(pP + q)$ $\setminus P =$; Now, consider a countable partition fP_n : $n < lg$ of P into perfect sets. Using this partition and the above observation we can easily construct a family $fP_n^{\bar{2}}$: $n < l$ g of disjoint perfect sets such that $\bigcap_{n < l} P_n^{\bar{2}}$ is independent over \bigcirc and for every nontrivial interval $I \cap R$ there is an $m < I$ such that P_m^2 I. Note that $P_{n \leq l}^2$ P_n^2 is a c-dense meager F -set.

To prove the inequality $Add(AD/D)$ $A(D(P))$ let us x a family F R^R such that $jFj < A(D(P))$. There exists a function $g 2 R^R$ satisfying the property $g \in F$ D(P). We claim that if g^2 : R ! R is any additive extension of $\overline{g}j \bigg|_{n<1} P_n^2$ then $g^2 + F$ D. More precisely, for every $\overline{f} 2F$, $g^2 + F$ is strongly Darboux. To see this pick any $f 2F$, $y 2R$, and any interval *I*. There exists $m < l$ such that P_m^2 is contained in *I*. Furthermore, we can nd x 2 P_m^2 *I* for which $g^2(x) + f(x) = g(x) + f(x) = y$. This shows that $g^2 + f$ is strongly Darboux.

The second statement in the lemma is proved by the obvious inequality A(D) Add(AD; D) A(D(P)) and Proposition [26](#page-13-3). \blacksquare

Now, (i) follows from Lemmas [24,](#page-13-0) [27,](#page-16-0) and Proposition [1](#page-1-1) (1).

(ii) Since Add(AD; Ext) $A(Ext) = c^+$, it suces to show the inequality Add(AD;Ext) c⁺. So for every $F = ff$: $\lt cg$ R^R we need to nd a g 2 AD such that $g + F$ Ext.

Let $hD_{\dot{S}}$ < ci be a sequence of pairwise disjoint c dense meager F sets such that $\epsilon_{\rm sc}$ D is linearly independent over Q. Such a sequence can be constructed in a similar way as the c dense meager F -set in the proof of Lemma [27.](#page-16-0) Now, by [\[3](#page-17-3), Proposition 4.3], for every ϵ ϵ we can nd h_{ϵ} 2 Ext such that RnD is h-negligible. We de ne g as an additive extension of $\bigcup_{\epsilon_0} (h - f)jD$.

To see that $g + f$ 2 Ext for every, observe that $g + f = h$ on D. But the set $R \nmid nD$ is h -negligible. So each $g + f$ is extendable.

(iii) The prove of this part is similar to the prove of Theorem [2](#page-3-0) (4). Fix a Hamel basis H which is a Bernstein set. By choosing the sets $B_{(1:n)}$ to

[7] R.G. Gibson, T. Natkaniec, Darboux-like functions