functions are the only continuous solutions, was first proved by A. L. Cauchy [1

Proof. (i) Let f LIF(\mathbb{R}^n) and g AD(\mathbb{R}^n). Fix x_1,\ldots,x_k \mathbb{R}^n and $q_1,\ldots q_k$ \mathbb{Q}

This choice is possible since

$$_{f \in F} ((h + f)[\{x : < \}] \{f(x)\}) (+1)/F/ < c.$$

It is easy to see that all the required properties of h are preserved. This ends the proof of $A(\mathsf{LIF}(\mathsf{R}$

Notice here that A(LIF) = c (Fact 2.3 (v)) implies, in particular, that every function from \mathbb{R}^R can be written as the algebraic sum of two linearly independent functions. In other words LIF + LIF = \mathbb{R}^R . Since we only found the upper bound for A(HF), it wo16Td[(can)-347(b)-27spper bo12313(A)-350((r)v(e)-350d[(y50((r))1(d))-1(.er)-470(tn)1(dg50((r))1(d))-1(.er)-470((r))1(d))-1(.er)-470((r))1(d)-1(.er)-470

Proof. Notice first that if /LC(f, 2)/=c then case (a) holds with $Z=\{0\}$

From (•) we see that if $\operatorname{Lin}_{\mathbb{Q}}(x_1,x_2,x_3)$ $\operatorname{Lin}_{\mathbb{Q}}(X)=\{0\}$ holds for c-many then the set Z satisfies the condition $/\sum_{z\in Z}\operatorname{LC}(f,2,z)/=c$. Obviously Z $[\mathbb{R}^n]^{<c}$. Thus, case (a) holds.

Summarizing the above discussion, we just need to consider a situation when $\dim(\{x_1,x_2,x_3\})=2$ and $\operatorname{Lin}_{\mathbb{Q}}(x_1,x_2,x_3)$ $\operatorname{Lin}_{\mathbb{Q}}(X)=\{0\}$ for all . Recall that $q_1x_1+q_2x_2+q_3x_3=0$, where q_1,q_2,q_3 $\mathbb{Q}\setminus\{0\}$. If two of x_1,x_2,x_3 were dependent over \mathbb{Q} then we would have $\dim(\{x_1,x_2,x_3\})$ 1. Thus, x_1,x_2,x_3 are pairwise independent. Now it is easy to see that case (b) holds.

Lemma 3.8. Let $X \in \mathbb{R}^n$ | $^{<c}$, x / X, and $y \in \mathbb{R}$. Suppose also that $h, g: X \in \mathbb{R}$ are functions linearly independent over \mathbb{Q} . Then there exist extensions h', g' of h and g onto $X \in \{x\}$ such that h' and g' are linearly independent over \mathbb{Q} and h'(x) + g'(x) = y.

Proof. Choose $h'(x) \in \text{Lin}_{\mathbb{Q}}(h[X] = g[X] = \{y\})$. This choice is possible since $|\text{Lin}_{\mathbb{Q}}(h[X] = g[X] = \{y\})| < c$. Then define g'(x) = y - h'(x). It is easy to $d[(x)] = \frac{1}{2} (x) + \frac{1}{2} (x$

holds because $f(-a_0)+f(a_0)=c$ and $m_0=c$ if c=0. Thus 0,c, $0,m_0$ $\text{Lin}_{\mathbb{Q}}(h/A_0)$ $\text{Lin}_{\mathbb{Q}}(g/A_0)$. It is easily seen that h/A_0 and g/A_0 satisfy (a) and (b).

x = dom(h) = dom(g) and $v = Lin_{Q}(h) = Lin_{Q}(g)$, where h and g denote the extensions obtained in the step .

Let < c. Assume that v / $Lin_{\mathbb{Q}}($ < h $) <math>Lin_{\mathbb{Q}}($ < g). Choose an a \mathbb{R} \setminus $Lin_{\mathbb{Q}}(dom($ < h)) and define <math>h(x) by 0, $h(x) = \frac{1}{2}v$ for $x \in \{-a,a\}$. Put also g(x) = f(x) - h(x). Since f(-a) + f(a) = LC(f), (3.3) implies that $v = Lin_{\mathbb{Q}}(x)$

g gnd

The inductive construction of functions h and g is somewhat similar to the one from the previous case. So assume that < c and the construction has been carried out for all < . If $v / \text{Lin}_{\mathbb{Q}}(h)$ then let X = dom(h) = dom(g) and Y [R]<c be such a set that $Lin_Q(g \{v\})$ Rⁿ x Y. By Property 2 (b), there exist $p_1, p_2, p_3 \in \mathbb{R}^n$ such that $_{1}^{3}p_{i}x_{i}=0$, $\text{Lin}_{\mathbb{Q}}(x_{1},x_{2},x_{3})$ $\text{Lin}_{\mathbb{Q}}(X)=\{0\}$, and $_{1}^{3}p_{i}f(x_{i}) \neq Y$. We extend h and g onto $\{x_{1},x_{2},x_{3}\}$. Choose $h(x_{1}),h(x_{2}),h(x_{3})$ \mathbb{R} in such a

way that

Then put
$$g(x_i) = f(x_i) - h(x_i)$$
 for $i = 3$. Obviously $v \in A$ prime A prime A

hv+]TF119.963Tf10.